色一区二区-色一色在线观看视频网站-色一级-色一涩-日韩欧美一区二区三区四区-日韩欧美一区二区三区在线观看

新聞動(dòng)態(tài)
NEWS
Location:Chinese Academy of Sciences > NEWS  > News in field Carbon Nanotubes

Molecular seeds sprout identical carbon nanotubes

Come: Chinese Academy of Sciences    Date: 2014-08-15 10:39:10


     
      The first effective technique for growing a batch of single-walled carbon nanotubes (SWCNTs) that all have the same molecular structure has been developed by scientists in Switzerland. The new process involves using "seed molecules" on a platinum substrate to grow SWCNTs with the desired structure. The breakthrough could be extremely important to those developing electronic devices based on SWCNTs because nanotubes with different structures can have very different electronic properties.
An SWCNT can be thought of as an atomically thin sheet of carbon that has been rolled up to form a tube about 1 nm thick, resembling a drinking straw. The carbon sheet always has the same honeycomb structure, which it shares with graphene.   
However, there are about a hundred different ways that the edges of the sheet can join together to make a tube, and this defines whether an SWCNT conducts electricity like a metal or a semiconductor. In the case of semiconducting nanotubes, the size of the electronic band gap also depends on how the edges are joined.
Electronic devices based on SWCNTs could, in principle, be used to create transistors and other components that are smaller, faster and more energy efficient than those based on silicon. But before that can happen, scientists have to come up with reliable ways of producing batches of SWCNTs with identical structures.
Costly separation
Careful control of how SWCNTs are prepared can limit the number of different structures to as few as five. Then SWCNTs with the desired structure can be separated from a mixture. However, this is a very costly process with a structurally pure sample of SWCNTs costing about $1000 per milligram from a chemical supplier. As a result, scientists are very keen on developing methods for producing batches containing just one structure.
This latest work was done by Juan Ramon Sanchez-Valencia and colleagues at the Swiss Federal Laboratories for Material Sciences and Technology (Empa) in Zürich.
     
Grown from seed
The new technique is based on the fact that, unlike a drinking straw, the tips of SWCNTs are capped by carbon atoms and each species has a cap with a different structure. The team used the established technique of organic chemical synthesis to create cap molecules with the same structure as the cap of the desired structural species of SWCNT. These cap molecules are placed on a platinum surface, which is heated in the presence of a carbon-rich gas such as ethylene. The platinum surface acts as a catalyst, pulling carbon atoms from the gas and passing them to the cap molecules. This steady supply of carbon molecules attaches itself to the bottom of a cap and pushes it up from surface, creating an SWCNT with the desired structure.

 
Metallic armchairs
The cap molecules were designed to seed SWCNTs with the "(6,6) armchair" structure. This much-studied type of nanotube is of interest to device designers because it conducts electricity like a metal. The SWCNTs were grown to several hundred nanometres in length before they were analysed using scanning tunnelling microscopy (STM) and Raman spectroscopy. This revealed that the SWCNTS were all of the same type and were free of structural defects.
"The clever thing about this is that they predesign the cap and that cap then defines the nanotube type," explains SWCNT expert James Tour at Rice University in the US, who was not involved in the research. Although the team did not show that the technique can create other types of SWCNTs by using different cap molecules, Tour says that this possibility "seems to be implied and it is likely that that would be the case".
Making tonnes of nanotubes
An important benefit of the new technique is that 1 kg of seed molecules could, in principle, produce 5 tonnes of SWCNTs, each 10 μm in length. On the downside, a platinum surface measuring about 30 km2 would be needed to grow such a quantity of SWCNTs.
An additional challenge facing anyone wanting to use the technique to produce commercial quantities of SWCNTs is how to deal with the entanglement of neighbouring nanotubes. This occurs before the SWCNTs reach a usable length, and disentangling nanotubes can be a tricky process.

< Previous Polychiral CNTs make better solar cellsDNA-Wrapped Carbon Nanotube Can Detec... Next >

?
Tel:+86-28-85241016,+86-28-85236765    Fax:+86-28-85215069,+86-28-85223978    E-mail:carbon@cioc.ac.cn,times@cioc.ac.cn,nano@cioc.ac.cn
QQ:800069832    Technical Support ac57.com
Copyright © Chengdu Organic Chemicals Co. Ltd., Chinese Academy of Sciences 2003-2025. manage 蜀ICP備05020035號(hào)-3
主站蜘蛛池模板: 欧美h版成版在线观看 | 一级毛片不卡片免费观看 | 亚洲成人影院在线观看 | 九一色视频 | 欧美日韩精品在线视频 | 国产一区二区精品久久91 | 久久国产成人 | 亚州免费视频 | 91色综合久久 | 精品日韩一区二区三区视频 | 久久精品国产99精品最新 | 99视频精品全国在线观看 | 亚洲精品无码不卡在线播放he | 一区二区三区免费视频网站 | 亚洲欧美一级久久精品 | 亚州色吧 | 成年网在线观看免费观看网址 | 九草在线播放 | 欧美极品video粗暴 | 成人精品在线视频 | 国产成人女人在线视频观看 | 99国产精品免费观看视频 | 在线看国产视频 | 欧美日韩精品一区二区三区 | 亚洲免费网站观看视频 | 久久女同互慰一区二区三区 | 亚洲成人视 | 在线观看视频一区 | 在线91精品国产免费 | 欧美一级毛片无遮无挡 | 女同日韩互慰互摸在线观看 | 国产一区二区精品久久91 | 成年毛片 | 我不卡午夜 | 国产一区二区三区免费观看 | 久久久毛片免费全部播放 | 日韩黄色视屏 | 国产午夜精品理论片影院 | 欧美精品a毛片免费观看 | 免费一级特黄 欧美大片 | 香蕉视频黄色在线观看 |